skip to main content


Search for: All records

Creators/Authors contains: "Fielder, Catherine E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be onlylog(M*/M)4.4, making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster.

     
    more » « less
  2. Abstract

    We have imaged the entirety of eight (plus one partial) Milky Way (MW)–like satellite systems, a total of 42 (45) satellites, from the Satellites Around Galactic Analogs II catalog in both Hαand Hiwith the Canada–France–Hawaii Telescope and the Jansky Very Large Array. In these eight systems we have identified four cases where a satellite appears to be currently undergoing ram pressure stripping (RPS) as its Higas collides with the circumgalactic medium (CGM) of its host. We also see a clear suppression of gas fraction (MHI/M*) with decreasing (projected) satellite–host separation—to our knowledge, the first time this has been observed in a sample of MW-like systems. Comparisons to the Auriga, A Project Of Simulating The Local Environment, and TNG50 cosmological zoom-in simulations show consistent global behavior, but they systematically underpredict gas fractions across all satellites by roughly 0.5 dex. Using a simplistic RPS model, we estimate the average peak CGM density that satellites in these systems have encountered to belogρcgm/gcm327.3. Furthermore, we see tentative evidence that these satellites are following a specific star formation rate to gas fraction relation that is distinct from field galaxies. Finally, we detect one new gas-rich satellite in the UGC 903 system with an optical size and surface brightness meeting the standard criteria to be considered an ultra-diffuse galaxy.

     
    more » « less
  3. ABSTRACT

    K-corrections – a necessary ingredient for converting between flux in observed bands to flux in rest-frame bands – are critical for comparing galaxies at differing redshifts. These corrections often rely on fits to empirical or theoretical spectral energy distribution (SED) templates of galaxies. However, templates can only produce reliable K-corrections in regimes where SED models are robust. For instance, the templates utilized in some popular software packages are not well-constrained in some bands (e.g. WISE W4 in Kcorrect), which results in ill-behaved K-corrections. We address this shortcoming by developing an empirically driven approach to K-corrections that limits the dependence on SED templates. We perform a polynomial fit for the K-correction as a function of a galaxy’s rest-frame colour determined in a pair of well-constrained bands (e.g. 0(g − r)) and redshift, exploiting the fact that galaxy SEDs can be approximated as a one-parameter family at low redshift. For bands well-constrained by SED templates, our empirically driven K-corrections yield results comparable to the SED fitting methods used by Kcorrect and the GSWLC-M2 catalogue (the updated medium-deep GALEX–SDSS–WISE Legacy Catalogue). However, our method dramatically outperforms Kcorrect derived K-corrections for WISE W4. Our method is also robust to incorrect template assumptions outside of the optical bands and enforces that the K-correction must be zero at z = 0. Our K-corrected photometry and code are publicly available.

     
    more » « less
  4. Abstract

    We report the discovery of Pavo, a faint (MV= −10.0), star-forming, irregular, and extremely isolated dwarf galaxy atD≈ 2 Mpc. Pavo was identified in Dark Energy Camera Legacy Survey imaging via a novel approach that combines low surface brightness galaxy search algorithms and machine-learning candidate classifications. Follow-up imaging with the Inamori-Magellan Areal Camera and Spectrograph on the 6.5 m Magellan Baade telescope revealed a color–magnitude diagram (CMD) with an old stellar population, in addition to the young population that dominates the integrated light, and a tip of the red giant branch distance estimate of1.990.22+0.20Mpc. The blue population of stars in the CMD is consistent with the youngest stars having formed no later than 150 Myr ago. We also detected no Hαemission with SOAR telescope imaging, suggesting that we may be witnessing a temporary low in Pavo’s star formation. We estimate the total stellar mass of Pavo to belogM*/M=5.6±0.2and measure an upper limit on its Higas mass of 1.0 × 106Mbased on the HIPASS survey. Given these properties, Pavo’s closest analog is Leo P (D= 1.6 Mpc), previously the only known isolated, star-forming, Local Volume dwarf galaxy in this mass range. However, Pavo appears to be even more isolated, with no other known galaxy residing within over 600 kpc. As surveys and search techniques continue to improve, we anticipate an entire population of analogous objects being detected just outside the Local Group.

     
    more » « less
  5. Abstract

    We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributions remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs.

     
    more » « less
  6. Abstract

    We use time-resolved spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) to examine the distribution of radial velocity (RV) variations in 249 stars identified as members of the Sagittarius (Sgr) dwarf spheroidal (dSph) galaxy by Hayes et al. We select Milky Way (MW) stars that have stellar parameters (log(g),Teff, and [Fe/H] ) similar to those of the Sagittarius members by means of a k-d tree of dimension 3. We find that the shape of the distribution of RV shifts in Sgr dSph stars is similar to that measured in their MW analogs, but the total fraction of RV variable stars in the Sgr dSph is larger by a factor of ∼2. After ruling out other explanations for this difference, we conclude that the fraction of close binaries in the Sgr dSph is intrinsically higher than in the MW. We discuss the implications of this result for the physical processes leading to the formation of close binaries in dwarf spheroidal and spiral galaxies.

     
    more » « less
  7. Abstract We present the HI-MaNGA programme of HI follow-up for the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. MaNGA, which is part of the Fourth phase of the Sloan Digital Sky Surveys (SDSS-IV), is in the process of obtaining integral field unit (IFU) spectroscopy for a sample of ∼10, 000 nearby galaxies. We give an overview of the HI 21cm radio follow-up observing plans and progress and present data for the first 331 galaxies observed in the 2016 observing season at the Robert C. Bryd Green Bank Telescope (GBT). We also provide a cross match of the current MaNGA (DR15) sample with publicly available HI data from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey. The addition of HI data to the MaNGA data set will strengthen the survey’s ability to address several of its key science goals that relate to the gas content of galaxies, while also increasing the legacy of this survey for all extragalactic science. 
    more » « less